BDNF VAL66MET POLYMORPHISM IS NOT ASSOCIATED WITH CORONARY ATHEROSCLEROSIS IN CZECH PATIENTS

M. Petrek¹, N. Motakova¹, A. Stahelova¹, F. Mrazek¹, J. Petrkova²

¹Immunology, Palacky University, ²Internal Medicine I, Faculty Hospital, Olomouc, Czech Republic.

Introduction

ULTNÍ NEMOCNICE

Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of coronary artery disease (CAD).

Recently, human BDNF Val66Met polymorphism has been associated with CAD in Chinese population [1] and this growth factor has been implicated as a plausible player in regulation of neuro-hormonal processes in patients with cardiovascular disease [2].

[1] Jiang H et al. BDNF Val66Met polymorphism is associated with unstable angina. Clin Chim Acta 2009; 400:3-7

[2] Erasmus RT. The brain and heart: Dancing in unison? Clin Chim Acta 2009; 400:1-2

Study subjects: A total of 397 unrelated individuals were enrolled into the study: 217 Czech patients from Olomouc area [age, median (range): 53 (25-79); males/females: 185/32] and 180 Czech healthy individuals [age, median (range): 29 (18-64); males/females: 95/85] serving as control population.

Patients and Methods

Diagnostic criteria for myocardial infarction (MI) were compatible with those recommended by an international consensus. Informed consent was obtained from all patients and controls.

Genotyping for BDNF Val66Met rs6265 G / A polymorphism was performed using qRT-PCR with "TaqMan" probes (Applied Biosystems, Assay ID C_11592758_10, Fig. 1).

The genotyping results were verified using the independent technique (PCR-SSP) with the primers as follows:

5' GGCTGACACTTTCGAACACG with 5' GTTACCCACTCACTAATACTG for 66Val allele and 5' GGCTGACACTTTCGAACACA with 5' GTTACCCACTCACTAATACTG for 66Met allele.

Statistical analysis: Consistency of the distribution of BDNF Val66Met genotypes with Hardy-Weinberg expectation was verified by the "x2 goodness-of-fit" test, comparisons of the frequencies of BDNF Val66Met variants in the studied groups was performed by χ^2 test.

Rationale and Aim

To further explore a possible role of this **BDNF** polymorphism as a genetic modifier in CAD we have investigated its association with myocardial infarction in the Czech population.

Figure 1: Genotyping of SNP BDNF rs6265 by qRT-PCR – interpretation

Genotype and allele frequencies of the BDNF Val66Met polymorphism did not differ between the patients and control subjects (p> 0.05, **Tab. 1**). Two investigated groups also did not differ in carriage rates (phenotype frequencies) of the BDNF Val66Met polymorphism.

Similarly, no association with MI was found when male/female MI patients were compared with control subjects separately (Tab. 2)

Results

The distribution of *BDNF* Val66Met genotypes complied to Hardy-Weinberg equilibrium in MI patients and control subjects (p > 0.05)

Table 1: Distribution of BDNF Val66Met polymorphism in MI patients and controls

<i>BDNF</i> rs6265 G/A (Val66Met)		Czech population		
		MI	Controls	
		(N=217)	(N=180)	
Genotypes	GG	149(0.687)	127(0.706)	
	GA	59(0.272)	44(0.244)	
	AA*	9(0.041)	9(0.050)	
Alleles	G	357(0.823)	298(0.828)	
	A†	77(0.177)	62(0.172)	
Carriers A [‡]		68(0.313)	53(0.294)	

Table 2: Distribution of BDNF Val66Met

polymorphism in MI patients and controls by gender

<i>BDNF</i> rs6265 G/A (Val66Met)		Czech population			
		MI		Controls	
		(N=217)		(N=180)	
		Male	Female	Male	Female
Genotypes	GG	125(0.676)	24(0.75)	69(0.726)	58(0.682)
	GA	54(0.292)	5(0.156)	21(0.221)	23(0.271)
	AA*	6(0.032)	3(0.094)	5(0.053)	4(0.047)
Alleles	G	304(0.822)	53(0.828)	159(0.837)	139(0.181)
	A†	66(0.178)	11(0.172)	31(0.163)	31(0.182)
Carriers	A‡	60(0.324)	8(0.25)	26(0.274)	27(0.318)

Conclusion

The BDNF Val66Met polymorphism is not associated with myocardial infarction

in Czech population.

We could not, therefore, replicate the observation from China [1], which suggested that BDNF Met/Met genotype is a genetic modifier in CAD.

Investigations in further centres and/or populations [2] are, therefore, necessary to obtain more information on possible role of BDNF genetic variability in coronary artery disease.

[1] Jiang H et al. *Clin Chim Acta* 2009; 400:3-7; [2] Little J et al. Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE Statement. Hum Genet 2009, 125:131-51.

Grant support: MSM ME-856 and MSM6198959205, PU project SV LF_2010_008.